R API for Naomi app

App to show district level estimates of HIV indicators

Running in docker

Docker images are built on GitHub actions, if on main branch run via:

docker run --rm -d --network=host --name hintr_redis redis
docker run --rm -d --network=host --mount type=volume,src=upload_volume,dst=/uploads \
  -e USE_MOCK_MODEL=true --name hintr ghcr.io/hivtools/hintr:main

For a more complete example of running on a network see docker test script.

Test that container is working by using

$ curl -s http://localhost:8888
{
    "status": "success",
    "errors": null,
    "data": "Welcome to hintr"
}

Validate PJNZ

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_pjnz_payload.json \
http://localhost:8888/validate/baseline-individual
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "pjnz",
        "data": {
            "country": "Malawi",
            "iso3": "MWI"
        },
        "filename": "Malawi2024.PJNZ",
        "fromADR": false,
        "resource_url": "https://adr.unaids.org/file/123.csv",
        "filters": null
    }
}

Validate shape file and return serialised data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_shape_payload.json \
http://localhost:8888/validate/baseline-individual
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "shape",
        "data": {
            "type": "FeatureCollection",
            "name": "demo_areas",
            "crs": {
                "type": "name",
                "properties": {
                    "name": "urn:ogc:def:crs:OGC:1.3:CRS84"
                }
            },
            "features": [
                {
                    "type": "Feature",
                    "properties": {
                        "area_id": "MWI",
... truncated 144125 lines of output

Validate population data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_population_payload.json \
http://localhost:8888/validate/baseline-individual
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "population",
        "data": null,
        "filename": "original.csv",
        "fromADR": false,
        "resource_url": null,
        "filters": null
    }
}

Validate baseline data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_baseline_payload.json \
http://localhost:8888/validate/baseline-combined
{
    "status": "success",
    "errors": null,
    "data": {
        "consistent": true
    }
}

Validate programme ART data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_programme_payload.json \
http://localhost:8888/validate/survey-and-programme
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "programme",
        "data": [
            {
                "area_id": "MWI_4_1_demo",
                "area_name": "Chitipa",
                "sex": "both",
                "age_group": "Y000_014",
                "year": 2011,
                "calendar_quarter": "CY2011Q4",
                "art_current": 127,
                "art_new": 9,
                "vl_tested_12mos": null,
                "vl_suppressed_12mos": null
            },
            {
... truncated 6180 lines of output

Validate ANC data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_anc_payload.json \
http://localhost:8888/validate/survey-and-programme
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "anc",
        "data": [
            {
                "area_id": "MWI_4_1_demo",
                "age_group": "Y015_049",
                "year": 2011,
                "anc_clients": 4330,
                "anc_known_pos": 24,
                "anc_already_art": 0,
                "anc_tested": 2105,
                "anc_tested_pos": 50,
                "anc_known_neg": 217,
                "births_facility": 3279,
                "anc_prevalence": 0.0315,
                "anc_art_coverage": 0
... truncated 3626 lines of output

Validate survey data

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/validate_survey_payload.json \
http://localhost:8888/validate/survey-and-programme
{
    "status": "success",
    "errors": null,
    "data": {
        "hash": "12345",
        "type": "survey",
        "data": [
            {
                "indicator": "prevalence",
                "survey_id": "DEMO2004DHS",
                "survey_mid_calendar_quarter": "CY2004Q4",
                "area_id": "MWI",
                "area_name": "Malawi - Demo",
                "res_type": "all",
                "sex": "both",
                "age_group": "Y015_049",
                "n_clusters": 512,
                "n_observations": 5136,
                "n_eff_kish": 3125.6878,
                "estimate": 0.1183,
... truncated 367974 lines of output

Get model run options

$ curl -s -X POST -H 'Content-Type: application/json' \
--data @inst/payload/model_run_options_payload.json \
http://localhost:8888/model/options
{
    "status": "success",
    "errors": null,
    "data": {
        "controlSections": [
            {
                "label": "General",
                "description": "Select general model options:",
                "controlGroups": [
                    {
                        "label": "Trigger mock model error",
                        "controls": [
                            {
                                "name": "mock_model_trigger_error",
                                "type": "select",
                                "required": true,
                                "helpText": "Set TRUE to force the model fit to error",
                                "options": [
                                    {
                                        "id": "true",
... truncated 1826 lines of output

Run a model

$ curl -s --data '{
    "data": {
        "pjnz": {
            "path": "testdata/Malawi2024.PJNZ",
            "filename": "Malawi2024.PJNZ",
            "hash": "12345",
            "fromADR": false
        },
        "shape": {
            "path": "testdata/malawi.geojson",
            "filename": "malawi.geojson",
            "hash": "12345",
            "fromADR": false
        },
        "population": {
            "path": "testdata/population.csv",
            "filename": "population.csv",
            "hash": "12345",
            "fromADR": false
        },
        "survey": {
            "path": "testdata/survey.csv",
            "filename": "survey.csv",
            "hash": "12345",
            "fromADR": false
        },
        "programme": {
            "path": "testdata/programme.csv",
            "filename": "programme.csv",
            "hash": "12345",
            "fromADR": false
        },
        "anc": {
            "path": "testdata/anc.csv",
            "filename": "anc.csv",
            "hash": "12345",
            "fromADR": false
        }
    },
    "options": {
        "area_scope": "MWI",
        "area_level": 4,
        "calendar_quarter_t1": "CY2020Q3",
        "calendar_quarter_t2": "CY2023Q4",
        "calendar_quarter_t3": "CY2024Q3",
        "calendar_quarter_t4": "CY2025Q3",
        "calendar_quarter_t5": "CY2026Q3",
        "survey_prevalence": "DEMO2020PHIA",
        "survey_art_coverage": "DEMO2020PHIA",
        "survey_recently_infected": "DEMO2020PHIA",
        "include_art_t1": "true",
        "include_art_t2": "true",
        "anc_clients_year2": 2023,
        "anc_clients_year2_num_months": "12",
        "anc_prevalence_year1": 2020,
        "anc_prevalence_year2": 2023,
        "anc_art_coverage_year1": 2020,
        "anc_art_coverage_year2": 2023,
        "spectrum_population_calibration": "none",
        "spectrum_plhiv_calibration_level": "none",
        "spectrum_plhiv_calibration_strat": "sex_age_coarse",
        "spectrum_artnum_calibration_level": "none",
        "spectrum_artnum_calibration_strat": "sex_age_coarse",
        "spectrum_infections_calibration_level": "none",
        "spectrum_infections_calibration_strat": "sex_age_coarse",
        "spectrum_aware_calibration_level": "none",
        "spectrum_aware_calibration_strat": "sex_age_coarse",
        "calibrate_method": "logistic",
        "artattend_log_gamma_offset": -4,
        "artattend": false,
        "output_aware_plhiv": "true",
        "rng_seed": 17,
        "no_of_samples": 500,
        "max_iter": 250
    },
    "version": {
        "hintr": "1.1.9",
        "naomi": "2.8.12",
        "rrq": "0.5.7",
        "traduire": "0.0.6"
    }
}' \
-X POST -H 'Content-Type: application/json' \
http://localhost:8888/model/submit
{
    "status": "success",
    "errors": null,
    "data": {
        "id": "957800d3055d679195ffe18aaf3391ab"
    }
}

Query status of model run

$ curl -s http://localhost:8888/model/status/957800d3055d679195ffe18aaf3391ab
{
    "status": "success",
    "errors": null,
    "data": {
        "done": false,
        "status": "RUNNING",
        "success": null,
        "queue": 0,
        "progress": [

        ],
        "id": "957800d3055d679195ffe18aaf3391ab"
    }
}

Get the result of a model run

$ curl -s http://localhost:8888/model/result/957800d3055d679195ffe18aaf3391ab
{
    "status": "success",
    "errors": null,
    "data": {
        "id": "957800d3055d679195ffe18aaf3391ab",
        "complete": true,
        "warnings": [
            {
                "text": "Zero population input for 8 population groups. Replaced with population 0.1.",
                "locations": [
                    "model_fit"
                ]
            }
        ]
    }
}

Calibrate a model

$ curl -s --data '{
    "options": {
        "spectrum_plhiv_calibration_level": "national",
        "spectrum_plhiv_calibration_strat": "sex_age_group",
        "spectrum_artnum_calibration_level": "national",
        "spectrum_artnum_calibration_strat": "sex_age_coarse",
        "spectrum_infections_calibration_level": "national",
        "spectrum_infections_calibration_strat": "sex_age_coarse",
        "spectrum_aware_calibration_level": "national",
        "spectrum_aware_calibration_strat": "sex_age_coarse",
        "calibrate_method": "logistic"
    },
    "version": {
        "hintr": "1.1.9",
        "naomi": "2.8.12",
        "rrq": "0.5.7",
        "traduire": "0.0.6"
    }
}' \
-X POST -H 'Content-Type: application/json' \
http://localhost:8888/calibrate/submit/957800d3055d679195ffe18aaf3391ab
{
    "status": "success",
    "errors": null,
    "data": {
        "id": "d5d08f4783975d8092e049adec43726b"
    }
}

Query status of calibrate run

$ curl -s http://localhost:8888/calibrate/status/d5d08f4783975d8092e049adec43726b
{
    "status": "success",
    "errors": null,
    "data": {
        "done": false,
        "status": "RUNNING",
        "success": null,
        "queue": 0,
        "progress": [

        ],
        "id": "d5d08f4783975d8092e049adec43726b"
    }
}

Get the result of a calibrate run

$ curl -s http://localhost:8888/calibrate/result/d5d08f4783975d8092e049adec43726b
{
    "status": "success",
    "errors": null,
    "data": {
        "data": [
            {
                "area_id": "MWI",
                "sex": "both",
                "age_group": "Y015_049",
                "calendar_quarter": "CY2016Q1",
                "indicator": "population",
                "mode": 7631061.6527,
                "mean": 7631061.6527,
                "lower": 7631061.6527,
                "upper": 7631061.6527
            },
            {
                "area_id": "MWI",
                "sex": "both",
                "age_group": "Y015_064",
... truncated 3403007 lines of output

Initialise download generation, type spectrum, coarse_output, summary or comparison

$ curl -s --data '{
    "notes": {
        "project_notes": {
            "name": "My project 123",
            "updated": "2022/05/17 12:34:21",
            "note": "These are my project notes"
        },
        "version_notes": [
            {
                "name": "Version 2",
                "updated": "2022/05/17 12:34:21",
                "note": "Notes specific to this version"
            },
            {
                "name": "Version 1",
                "updated": "2022/05/14 09:12:54",
                "note": "Notes from the first version"
            }
        ]
    },
    "state": {
        "datasets": {
            "pjnz": {
                "path": "72A9B1F58AAA743ADA64C6AE985CF228.pjnz",
                "filename": "demo_mwi2019.pjnz"
            },
            "population": {
                "path": "651105353D7153381ED29363DF0D772F.csv",
                "filename": "demo_population_agesex.csv"
            },
            "shape": {
                "path": "EBE533976BFAF0CABCA2C2E1B611B9C7.geojson",
                "filename": "demo_areas.geojson"
            },
            "survey": {
                "path": "F669CA9AA38A3993B5A9E9D3EB717C7D.csv",
                "filename": "demo_survey_hiv_indicators.csv"
            },
            "programme": {
                "path": "8301300AB39BE177FA593571B9DD94C4.csv",
                "filename": "demo_art_number.csv"
            },
            "anc": {
                "path": "E6323AAEB045D31E4A267398F669CF20.csv",
                "filename": "demo_anc_testing.csv"
            }
        },
        "model_fit": {
            "options": {
                "area_scope": "MWI",
                "area_level": 4,
                "calendar_quarter_t1": "CY2020Q3",
                "calendar_quarter_t2": "CY2023Q4",
                "calendar_quarter_t3": "CY2024Q3",
                "calendar_quarter_t4": "CY2025Q3",
                "calendar_quarter_t5": "CY2026Q3",
                "survey_prevalence": "DEMO2020PHIA",
                "survey_art_coverage": "DEMO2020PHIA",
                "survey_recently_infected": "DEMO2020PHIA",
                "include_art_t1": "true",
                "include_art_t2": "true",
                "anc_clients_year2": 2023,
                "anc_clients_year2_num_months": "12",
                "anc_prevalence_year1": 2020,
                "anc_prevalence_year2": 2023,
                "anc_art_coverage_year1": 2020,
                "anc_art_coverage_year2": 2023,
                "spectrum_population_calibration": "none",
                "spectrum_plhiv_calibration_level": "none",
                "spectrum_plhiv_calibration_strat": "sex_age_coarse",
                "spectrum_artnum_calibration_level": "none",
                "spectrum_artnum_calibration_strat": "sex_age_coarse",
                "spectrum_infections_calibration_level": "none",
                "spectrum_infections_calibration_strat": "sex_age_coarse",
                "spectrum_aware_calibration_level": "none",
                "spectrum_aware_calibration_strat": "sex_age_coarse",
                "calibrate_method": "logistic",
                "artattend_log_gamma_offset": -4,
                "artattend": false,
                "output_aware_plhiv": "true",
                "rng_seed": 17,
                "no_of_samples": 500,
                "max_iter": 250
            },
            "id": "17d40b32f8e649349e047561a6831144"
        },
        "calibrate": {
            "options": {
                "spectrum_plhiv_calibration_level": "national",
                "spectrum_plhiv_calibration_strat": "sex_age_group",
                "spectrum_artnum_calibration_level": "national",
                "spectrum_artnum_calibration_strat": "sex_age_coarse",
                "spectrum_infections_calibration_level": "national",
                "spectrum_infections_calibration_strat": "sex_age_coarse",
                "spectrum_aware_calibration_level": "national",
                "spectrum_aware_calibration_strat": "sex_age_coarse",
                "calibrate_method": "logistic"
            },
            "id": "6e457f5a9f0413708624b7b0384e5fd0"
        },
        "version": {
            "hintr": "1.1.9",
            "naomi": "2.8.12",
            "rrq": "0.5.7",
            "traduire": "0.0.6"
        }
    }
}' \
-X POST -H 'Content-Type: application/json' \
http://localhost:8888/download/submit/spectrum/d5d08f4783975d8092e049adec43726b
{
    "status": "success",
    "errors": null,
    "data": {
        "id": "930202bce97ebe49df170f0e59512357"
    }
}

Query status of download generation

$ curl -s http://localhost:8888/download/status/930202bce97ebe49df170f0e59512357
{
    "status": "success",
    "errors": null,
    "data": {
        "done": false,
        "status": "RUNNING",
        "success": null,
        "queue": 0,
        "progress": [

        ],
        "id": "930202bce97ebe49df170f0e59512357"
    }
}

Headers for summary download result

$ curl -s -I http://localhost:8888/download/result/930202bce97ebe49df170f0e59512357
HTTP/1.1 200 OK
Date: Mon, 23 Jan 2023 18:44:36 GMT
Content-Type: application/octet-stream
Content-Disposition: attachment; filename="MWI_naomi-output_20230123-1844.zip"
X-Porcelain-Validated: false
Content-Length: 18810039

Get the summary download result

$ curl -s http://localhost:8888/download/result/930202bce97ebe49df170f0e59512357
Hidden 74802 bytes of output

Get plotting metadata for Malawi

$ curl -s http://localhost:8888/meta/plotting/Malawi
{
    "status": "success",
    "errors": null,
    "data": {
        "anc": {
            "choropleth": {
                "indicators": [
                    {
                        "indicator": "anc_prevalence",
                        "value_column": "anc_prevalence",
                        "indicator_column": "",
                        "indicator_value": "",
                        "name": "ANC HIV prevalence",
                        "min": 0,
                        "max": 0.5,
                        "colour": "interpolateOranges",
                        "invert_scale": false,
                        "scale": 1,
                        "accuracy": null,
                        "format": "0.0%"
... truncated 798 lines of output

Get information about hintr versions

$ curl -s http://localhost:8888/hintr/version
{
    "status": "success",
    "errors": null,
    "data": {
        "hintr": "1.1.9",
        "naomi": "2.8.12",
        "rrq": "0.5.7",
        "traduire": "0.0.6"
    }
}

Get information about hintr’s workers

$ curl -s http://localhost:8888/hintr/worker/status
{
    "status": "success",
    "errors": null,
    "data": {
        "capsizable_pipit_1": "IDLE",
        "capsizable_pipit_2": "IDLE"
    }
}

Docker container can be cleaned up using

docker rm -f hintr hintr_redis

Input data

Input data should be written to the shared upload_volume. When requesting validation pass the absolute path to the file in the request JSON e.g.

{
  "type": "pjnz",
  "path": "/uploads/Botswana.pjnz"
}

Validating JSON against schema

To turn on validation of requests and responses you need to set the environmental variable VALIDATE_JSON_SCHEMAS to true. You can do that by writing to a .Renviron file, on linux echo -e "VALIDATE_JSON_SCHEMAS=true" >> .Renviron.

Running tests

To run tests locally:

  1. Install all dependencies with devtools::install_deps("."). You may be prompted to install some operating system packages; these should be available via your package manager but for protoc you may need the following instructions: https://askubuntu.com/questions/1072683/how-can-i-install-protoc-on-ubuntu-16-04

  2. Some packages need to be installed from GitHub:

    • devtools::install_github("ropensci/jsonvalidate")
    • devtools::install_github("mrc-ide/eppasm")
    • devtools::install_github("mrc-ide/naomi")
    • devtools::install_github("mrc-ide/rrq")
  3. Install the hintr package:

    R CMD INSTALL .
  4. If running all tests, including those that require redis, start a redis docker container docker run --rm -d --network=host --name hintr_redis redis

Finally tests can be run with devtools::test().

Using sensitive data

To run tests which use sensitive data you need to clone the private naomi-data repo into tests/testthat/testdata/sensitive.

git clone git@github.com:mrc-ide/naomi-data.git tests/testthat/testdata/sensitive

Adding prerun model results

Details here will depend on the deploy (and that will be the place to look for the running version).

Use hintr::prerun_push, specifying the relative filenames of the output, spectrum and summary files.

First, run a model using naomi::hintr_run_model into some directory, say mydir

Then import the data into the production copy of naomi with

hintr::prerun_push("mydir",
                   output = "malawi_output.qs",
                   spectrum = "malawi_spectrum_download.zip",
                   summary = "malawi_summary_download.zip")

Make a note of the hash that is returned - you’ll need that if you want to delete the data.

You must be on the VPN for this to work.